# PVR VENTURI VOLUME CONTROL VALVE

- · Precision PPs Venturi Air Measurement
- · Venturi according to DIN 1952/ISO 5167
- · External Air Tight to DIN 24194 Part 4
- · Shut off Air Tight to DIN 1946 Part 4
- · Heavy duty Blade Seal
- 12 mm Ø solid drive shaft for fast speed
- Max. speed 0..60° rotation is 1s
- Shaft bearings for low rotation torque
- Flanged connection for easy site installation
- · CMR fast actuators and DPC are factory fitted
- · Incorporating the high accuracy CMR sensors
- · 24 month warranty
- · 30 Years field application experience

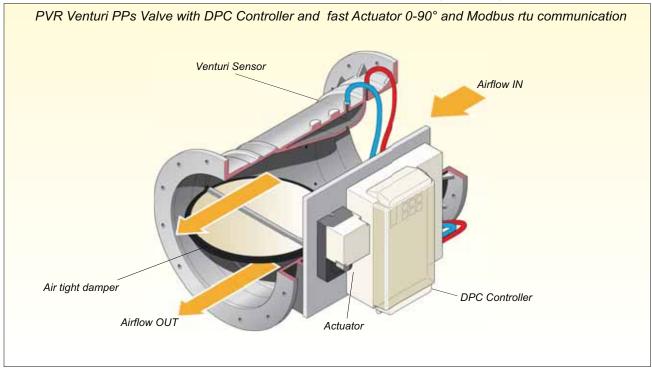


PVR Venturi PPs Valve

#### Valve Body Construction

The PVR Venturi Valve is manufactured to the highest engineering precision with CNC machines. The valve is formed from PPs Plastic and machined to provide very close tolerances. The venturi is formed to provide always the same measurement. The flange connection on either side provide strength to the overall valve body so that it cannot distort during installation.

The damper blade consists of two PPs plates which sandwiches a silicone disc seal. A 12mmØ stainless steel axle (PPs coated) is embedded between the two plates to provide a heavy duty functionallity. Air tight bearings on both sides of the valve provide smooth action with relatively low torque. The blade and axle are designed for very fast motor rotation i.e. 1 second from open to closed position. With such high speeds, the axle will withstand the enormous torque which develops on the shaft when turning from open to close in small steps to provide high accuracy control without a fluctuating Hysteresis.


#### **Venturi Construction**

The Venturi is designed for each Size and formed to the same precision with CNC machines. It consists of a number of total averaging pressure measurement holes on the inlet of the venturi. The venturi is welded into the inside of the valve which has a reduced open area. The air is forced through the nozzle at higher speed and four static averaging pressure holes pick up the increased static pressure.

#### **Venturi Measurement**

The total and the static pressure is then converted by the Volume Transmitter into a scaled and linear air volume providing either I/s, m3/s or m3/h. The venturi in combination with the CMR sensor is factory calibrated and provides an accurate and repeatable measurement

Due to the very unique shape of the venturi, the pressure is regained and a low total overall pressure drop is achieved.



The information is subject to change without notice



# PVR VENTURI VALVE SPECIFICATIONS

#### **Selection of Volume Control Damper**

It is essential to determine the air volume during the design stage. Normally there is a minimum and a maximum volume which has to be controlled.

The duct area should be calculated so that the velocity is approximately 2.5m/s at the minimum volume and preferably 5m/s at the operating point if possible. If the velocity is more than 5m/s at the maximum volume then the noise level criteria needs to be considered. The maximum velocity should not exceed 9m/s as the duct resistance shall increase and the overall energy consumption shall go up. Use selection Table 1 on page 4.

The PVR Venturi Valve is equipped with a motor and controller mounting bracket. It has double damper blades with an embedded silicone seal. Other materials are available on request. The venturi reduces the diameter for a very short length and it is formed for pressure regain. The reduced internal area of the valve shall increase the velocity pressure momentarily but will have a regain of pressure after passing through the venturi, which means that the overall pressure drop can be kept at a minimum.

The heavy duty drive stainless steel shaft and PPs coated is bolted firmly to the valve blade to withstand the very high momentary torque developed by the fast actuator. The shaft is guided by sealed Teflon bearings on either side of the valve body.

#### Installation

The PVR Venturi Valve works in any position provided it is used in non condensing conditions. It is best if the blades and actuator are positioned horizontally rather then having the actuator hanging down. This way, the weight is reduced on the side seals and provides a long term efficient operation. It is also easier for the maintenance engineers to replace an actuator. When the damper is installed, care must be taken to leave sufficient space for the engineers to inspect and replace the motor - a 500mm space would be perfect.

### **Hysteresis**

The PVR Venturi Valves have a very low hysteresis due to the sturdy single blade construction and therefore the damper can be moved very accurately to a control position.

#### Maintenance

The PVR Venturi Valve is maintenance free.

#### **Materials**

PVR valve Body - PPs Plastic

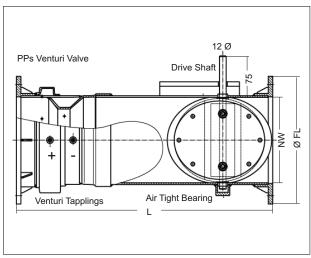
Blade/Seal - PPs Plastic with Seal
Drive Shaft - Stainless Steel PPs coated

Drive Shaft Seal - 'O'Ring Actuator Brackets - PPs

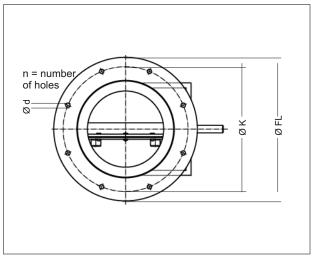
Valve sizes see table on right.

Valve diameters are sized to fit onto standard round PPs duct

Alternative Brackets and spigot connections on request.


## Specifications

Recommended minimum air velocity is
Recommended operating air velocity is
Maximum recommended air velocity is
9 m/s


Humidity 10% to 90% non condensing.

Operating Temperature (dry condition) -20 to 80°C

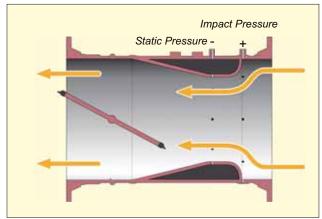
Airtightness - To DIN 1946 Part 4



PVR Venturi PPs Valve with DPC and Actuator Bracket



PVR Venturi PPs Valve with DPC and Actuator Bracket


| PVR Valve dimensions |            |      |     |     |    |    |  |  |  |  |  |
|----------------------|------------|------|-----|-----|----|----|--|--|--|--|--|
| Size Ø               | Stock Code | L    | ØFL | ØK  | Ød | n  |  |  |  |  |  |
|                      |            |      |     |     |    |    |  |  |  |  |  |
| 160 mm               | PVR-160    | 450  | 230 | 200 | 7  | 8  |  |  |  |  |  |
| 180 mm               | PVR-180    | 510  | 250 | 220 | 7  | 8  |  |  |  |  |  |
| 200 mm               | PVR-200    | 510  | 270 | 240 | 7  | 8  |  |  |  |  |  |
| 250 mm               | PVR-250    | 700  | 320 | 290 | 7  | 12 |  |  |  |  |  |
| 315 mm               | PVR-315    | 760  | 395 | 350 | 9  | 12 |  |  |  |  |  |
| 355 mm               | PVR-355    | 1050 | 435 | 400 | 9  | 12 |  |  |  |  |  |
| 400 mm               | PVR-400    | 1100 | 480 | 445 | 9  | 16 |  |  |  |  |  |
| 450 mm               | PVR-450    | 1200 | 520 | 490 | 9  | 20 |  |  |  |  |  |
| 500 mm               | PVR-500    | 1300 | 580 | 550 | 9  | 20 |  |  |  |  |  |
|                      |            |      |     |     |    |    |  |  |  |  |  |
|                      |            |      |     |     |    |    |  |  |  |  |  |

PVR Venturi PPs Valve Dimensions





# PVR VENTURI VELOCITY PRESSURES



PVR Venturi tube connections

The velocity pressure is measured by the Venturi built into the PVR Valve and the total impact pressure is measured on the positive (+red) and the static pressure is measured on the negative (- blue) tube connections. The CMR Volume Sensor shall be connected to the corresponding nipples using CMR PVC red and blue tube. When the CMR Sensors are ordered with the PVR Venturi then it is pre-adjusted at the factory - i.e. duct diameter, density and VVR Venturi Magnification Factor (mf) and the range is in m<sup>3</sup>/s ,m<sup>3</sup>/h, l/s or ACR (air change rate). It is ready for connection to the control or monitoring system.

If the CMR Volume Sensor such as P-Sensor, V-Sensor, DPM-Sensor or DPC-Controller was ordered separately and it was not factory adjusted then it is quite simple to adjust the parameters on site. All Sensor have a keyboard and display. The duct diameter and the magnification factor of the PVR Venturi Valve must be entered which is stated on each valve size on page 2.

If the volume indicated on the CMR Sensor display is deviating from the actual measurements, then the magnification factor can be adjusted to suit the installation abnormalities via the Sensor's keyboard. To find the best possible accuracy for your application, adjust the fan to a constant volume - start with 50% of the minimum and maximum operating volume and take a pitot travers reading with a CAL150 instrument. Once the average volume has been established and it is not the same as displayed on the CMR Sensor, then adjust the Magnification Factor (mf) until the same display is achieved. Check at 25%, 75% and 100% volume set point. The CMR Sensors have also parameters to linearize each point of the measurement for more critical applications.

Useful PVR Venturi scaling formula:

velocity m/s = 
$$\sqrt{\frac{2 \times (\Delta P \ln Pa/(mf) \text{ factor})}{1.2 \text{ Density}}}$$

Example:

2 x (100Pa across PVR-315/4.539 mf) = 44.06/1.2 = 36.71  $\sqrt{36.71} = 6.058 \,\text{m/s}$ 

 $6.058 \text{ m/s} \times (\text{duct area } 0.07744) = 0.469 \text{m}^3/\text{s} \times 3600 = 1688 \text{ m}^3/\text{h}$ 

Conversion Table - Velocity in m/s at standard density to Velocity Pressure in Pa

| m/s   | 0.0    | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    | 0.6    | 0.7    | 0.8    | 0.9    |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 111/0 | 0.0    | 0.1    | 0.2    | 0.0    | 0.1    | 0.0    | 0.0    | 0.1    | 0.0    | 0.0    |
| 0     | 0.00   | 0.01   | 0.02   | 0.05   | 0.10   | 0.15   | 0.22   | 0.29   | 0.38   | 0.49   |
| 1     | 0.60   | 0.73   | 0.86   | 1.01   | 1.18   | 1.35   | 1.54   | 1.73   | 1.94   | 2.17   |
| 2     | 2.40   | 2.65   | 2.90   | 3.17   | 3.46   | 3.75   | 4.06   | 4.37   | 4.70   | 5.05   |
| 3     | 5.40   | 5.77   | 6.14   | 6.53   | 6.94   | 7.35   | 7.78   | 8.21   | 8.66   | 9.13   |
| 4     | 9.60   | 10.09  | 10.58  | 11.09  | 11.62  | 12.15  | 12.70  | 13.25  | 13.82  | 14.41  |
| 5     | 15.00  | 15.61  | 16.22  | 16.85  | 17.50  | 18.15  | 18.82  | 19.49  | 20.18  | 20.89  |
| 6     | 21.60  | 22.33  | 23.06  | 23.81  | 24.58  | 25.35  | 26.14  | 26.93  | 27.74  | 28.57  |
| 7     | 29.40  | 30.25  | 31.10  | 31.97  | 32.86  | 33.75  | 34.66  | 35.57  | 36.50  | 37.45  |
| 8     | 38.40  | 39.37  | 40.34  | 41.33  | 42.34  | 43.35  | 44.38  | 45.41  | 46.46  | 47.53  |
| 9     | 48.60  | 49.69  | 50.78  | 51.89  | 53.02  | 54.15  | 55.30  | 56.45  | 57.62  | 58.81  |
| 10    | 60.00  | 61.21  | 62.43  | 63.65  | 64.90  | 66.15  | 67.42  | 68.69  | 69.98  | 71.29  |
| 11    | 72.60  | 73.93  | 75.26  | 76.61  | 77.98  | 79.35  | 80.74  | 82.13  | 83.54  | 84.97  |
| 12    | 86.40  | 87.85  | 89.30  | 90.77  | 92.26  | 93.75  | 95.26  | 96.77  | 98.30  | 99.85  |
| 13    | 101.40 | 102.97 | 104.54 | 106.23 | 107.74 | 109.35 | 110.98 | 112.61 | 114.26 | 115.93 |
| 14    | 117.60 | 119.29 | 120.98 | 122.69 | 124.42 | 126.15 | 127.90 | 129.65 | 131.42 | 133.21 |
| 15    | 135.00 | 136.81 | 138.62 | 140.45 | 142.30 | 144.15 | 146.02 | 147.89 | 149.78 | 151.69 |
| 16    | 153.60 | 155.53 | 157.46 | 157.46 | 159.41 | 161.38 | 163.35 | 165.34 | 167.33 | 169.34 |
| 17    | 173.40 | 175.45 | 177.50 | 179.57 | 181.66 | 183.75 | 185.86 | 187.97 | 190.10 | 192.25 |
| 18    | 194.40 | 196.57 | 198.74 | 200.93 | 203.14 | 205.35 | 207.58 | 209.81 | 212.06 | 214.33 |
| 19    | 216.60 | 218.89 | 221.18 | 223.49 | 225.82 | 228.15 | 230.50 | 232.85 | 235.22 | 237.61 |
| 20    | 240.00 | 242.41 | 244.82 | 247.25 | 249.70 | 252.15 | 254.62 | 257.09 | 259.58 | 262.09 |
| 21    | 264.60 | 267.13 | 269.66 | 272.21 | 274.78 | 277.35 | 279.94 | 282.53 | 285.14 | 287.77 |
| 22    | 290.40 | 293.05 | 295.70 | 298.37 | 301.06 | 303.75 | 306.46 | 309.17 | 311.90 | 314.65 |
| 23    | 317.40 | 320.17 | 322.94 | 325.73 | 328.54 | 331.35 | 334.18 | 337.01 | 339.86 | 342.73 |
| 24    | 345.60 | 348.49 | 351.38 | 354.29 | 357.22 | 360.15 | 363.10 | 366.05 | 369.02 | 372.01 |
| 25    | 375.00 | 378.01 | 381.02 | 384.05 | 387.10 | 390.15 | 393.22 | 396.29 | 399.38 | 402.49 |

To get the range of the CMR Sensor use the keyboard and display the range. This is the sensor range in m³/s or m³/h at 10V / 20mA. Enter this range into your control system. No further calculations are necessary. If you want to use the table above, use the range of the transmitter in Pa and divide it by the (mf) of the PVR. Look up the velocity above. i.e. 100Pa / 4.539 (315 Valve) = 22.03 Pa. Look up above ~ 22.03 Pa and read on side and top ~ 6.05 m/s then multiply with duct area 0.07744(315 Valve) m2 to get m3/s then multiply by 3600 to get m<sup>3</sup>/h.



22 Repton Court Repton Close Basildon Essex SS13 1LN GB www.cmr-controls.com

Phone +44 (0) 1268 287222 +44 (0) 1268 287099 Fax mail sales@cmr-controls.com



# **PVR SELECTIONS AND NOISE LEVELS**

### **Part Number Selection Table 1**

|             |                                      | Size | Length | Mag    | Area    | Volume  | Volume  | Volume   | Volume  | Volume  | Volume   |
|-------------|--------------------------------------|------|--------|--------|---------|---------|---------|----------|---------|---------|----------|
|             |                                      | DN   | L      | Factor |         | at 3m/s | at 5m/s | at 9 m/s | at 3m/s | at 5m/s | at 9 m/s |
| Part Number | Description                          | mm   | mm     | (mf)   | m2      | m3/s    | m3/s    | m3/s     | m3/h    | m3/h    | m3/h     |
|             |                                      |      |        |        |         |         |         |          |         |         |          |
|             |                                      |      |        |        |         |         |         |          |         |         |          |
| PVR-160     | 160mm Venturi Valve with DPC Bracket | 160  | 450    | 4.510  | 0.02011 | 0.060   | 0.101   | 0.181    | 217     | 362     | 652      |
| PVR-200     | 200mm Venturi Valve with DPC Bracket | 200  | 510    | 4.229  | 0.03142 | 0.094   | 0.157   | 0.283    | 339     | 566     | 1018     |
| PVR-250     | 250mm Venturi Valve with DPC Bracket | 250  | 700    | 3.614  | 0.04909 | 0.147   | 0.245   | 0.442    | 530     | 884     | 1591     |
| PVR-315     | 315mm Venturi Valve with DPC Bracket | 315  | 760    | 4.539  | 0.07794 | 0.234   | 0.390   | 0.701    | 842     | 1403    | 2525     |
| PVR-355     | 355mm Venturi Valve with DPC Bracket | 355  | 1050   | 4.372  | 0.09899 | 0.297   | 0.495   | 0.891    | 1069    | 1782    | 3207     |
| PVR-400     | 400mm Venturi Valve with DPC Bracket | 400  | 1100   | 4.644  | 0.12568 | 0.377   | 0.628   | 1.131    | 1357    | 2262    | 4072     |
| PVR-450     | 450mm Venturi Valve with DPC Bracket | 450  | 1200   | 4.504  | 0.15906 | 0.477   | 0.795   | 1.432    | 1718    | 2863    | 5154     |
| PVR-500     | 500mm Venturi Valve with DPC Bracket | 500  | 1300   | 4.624  | 0.19638 | 0.589   | 0.982   | 1.767    | 2121    | 3535    | 6363     |
|             |                                      |      |        |        |         |         |         |          |         |         |          |

### **Performance and Noise Levels**

|        |          |        | Static Pressure at Venturi in Pa |     |     |     |    |    |     |    | Static Pressure at Venturi in Pa |    |        |     |     |    |    |     |                                | Static Pressure at Venturi in Pa |        |     |     |     |    |    |    |    |       |
|--------|----------|--------|----------------------------------|-----|-----|-----|----|----|-----|----|----------------------------------|----|--------|-----|-----|----|----|-----|--------------------------------|----------------------------------|--------|-----|-----|-----|----|----|----|----|-------|
|        |          |        | 100 Pa                           |     |     |     |    |    |     |    |                                  |    | 250 Pa |     |     |    |    |     |                                |                                  | 500 Pa |     |     |     |    |    |    |    |       |
| Valve  | Velocity | Volume | e LW (dB/Octave) Power level Su  |     |     |     |    |    | Sum | LW | W (dB/Octave) Power level Sum    |    |        |     |     |    |    | Sum | LW (dB/Octave) Power level Sum |                                  |        |     |     |     |    |    |    |    |       |
| Size Ø | m/s      | m3/h   | 63                               | 125 | 250 | 500 | 1k | 2k | 4k  | 8k | dB(A)                            | 63 | 125    | 250 | 500 | 1k | 2k | 4k  | 8k                             | dB(A)                            | 63     | 125 | 250 | 500 | 1k | 2k | 4k | 8k | dB(A) |
| 160    | 2        | 145    | 62                               | 56  | 50  | 44  | 38 | 32 | 25  | 20 | 46                               | 67 | 61     | 56  | 50  | 44 | 38 | 30  | 25                             | 52                               | 71     | 66  | 60  | 54  | 48 | 42 | 34 | 29 | 56    |
|        | 5        | 362    | 71                               | 65  | 59  | 53  | 48 | 42 | 36  | 29 | 56                               | 77 | 71     | 65  | 59  | 53 | 47 | 41  | 35                             | 61                               | 81     | 75  | 69  | 63  | 57 | 51 | 46 | 39 | 65    |
|        | 7.5      | 543    | 75                               | 69  | 63  | 58  | 52 | 46 | 40  | 33 | 60                               | 81 | 75     | 69  | 63  | 57 | 51 | 46  | 39                             | 65                               | 85     | 79  | 73  | 67  | 62 | 56 | 50 | 43 | 70    |
|        | 10       | 724    | 78                               | 72  | 66  | 61  | 55 | 49 | 43  | 36 | 63                               | 84 | 78     | 72  | 66  | 60 | 54 | 49  | 42                             | 68                               | 88     | 82  | 76  | 70  | 64 | 59 | 53 | 46 | 73    |
| 200    | 2        | 226    | 63                               | 57  | 51  | 46  | 40 | 34 | 26  | 21 | 48                               | 69 | 63     | 57  | 51  | 45 | 39 | 32  | 27                             | 53                               | 73     | 67  | 61  | 55  | 49 | 44 | 36 | 31 | 58    |
|        | 5        | 565    | 73                               | 67  | 61  | 55  | 49 | 43 | 37  | 30 | 57                               | 78 | 72     | 66  | 61  | 55 | 49 | 43  | 36                             | 63                               | 82     | 76  | 71  | 65  | 59 | 53 | 47 | 40 | 67    |
|        | 7.5      | 848    | 77                               | 71  | 65  | 59  | 53 | 47 | 42  | 35 | 61                               | 82 | 76     | 71  | 65  | 59 | 53 | 47  | 40                             | 67                               | 87     | 81  | 75  | 69  | 63 | 57 | 51 | 44 | 71    |
|        | 10       | 1131   | 80                               | 74  | 68  | 62  | 58 | 50 | 44  | 38 | 64                               | 85 | 79     | 74  | 68  | 62 | 56 | 50  | 43                             | 70                               | 89     | 84  | 78  | 72  | 66 | 60 | 54 | 47 | 74    |
| 250    | 2        | 353    | 65                               | 59  | 53  | 47  | 41 | 35 | 27  | 23 | 49                               | 70 | 64     | 59  | 53  | 47 | 41 | 33  | 28                             | 55                               | 74     | 69  | 63  | 57  | 51 | 45 | 37 | 32 | 59    |
|        | 5        | 884    | 74                               | 68  | 62  | 56  | 51 | 45 | 39  | 32 | 59                               | 80 | 74     | 68  | 62  | 56 | 50 | 44  | 38                             | 64                               | 84     | 78  | 72  | 66  | 60 | 54 | 49 | 42 | 68    |
|        | 7.5      | 1325   | 78                               | 72  | 68  | 61  | 58 | 49 | 43  | 36 | 63                               | 84 | 78     | 72  | 66  | 60 | 54 | 49  | 42                             | 68                               | 88     | 82  | 76  | 70  | 65 | 59 | 53 | 46 | 73    |
|        | 10       | 1767   | 81                               | 75  | 69  | 64  | 58 | 52 | 46  | 39 | 66                               | 87 | 81     | 75  | 69  | 63 | 57 | 52  | 45                             | 71                               | 81     | 85  | 79  | 73  | 67 | 62 | 56 | 49 | 76    |
| 315    | 2        | 561    | 66                               | 60  | 55  | 49  | 43 | 37 | 29  | 24 | 51                               | 72 | 66     | 60  | 54  | 48 | 42 | 35  | 30                             | 56                               | 76     | 70  | 64  | 58  | 53 | 47 | 39 | 34 | 61    |
|        | 5        | 1403   | 76                               | 70  | 64  | 58  | 52 | 46 | 40  | 34 | 60                               | 81 | 75     | 69  | 64  | 58 | 52 | 46  | 39                             | 66                               | 85     | 80  | 74  | 68  | 62 | 56 | 50 | 43 | 70    |
|        | 7.5      | 2104   | 80                               | 74  | 68  | 62  | 56 | 50 | 45  | 38 | 64                               | 85 | 79     | 74  | 68  | 62 | 56 | 50  | 43                             | 70                               | 90     | 84  | 78  | 72  | 66 | 60 | 54 | 47 | 74    |
|        | 10       | 2806   | 83                               | 77  | 71  | 65  | 59 | 53 | 47  | 41 | 67                               | 88 | 82     | 77  | 71  | 65 | 59 | 53  | 46                             | 73                               | 93     | 87  | 81  | 75  | 69 | 63 | 57 | 50 | 77    |
| 355    | 2        | 713    | 67                               | 61  | 55  | 49  | 44 | 38 | 30  | 25 | 52                               | 73 | 67     | 61  | 55  | 49 | 43 | 35  | 31                             | 57                               | 77     | 71  | 65  | 59  | 53 | 47 | 40 | 35 | 61    |
|        | 5        | 1782   | 76                               | 71  | 65  | 59  | 53 | 47 | 41  | 34 | 61                               | 82 | 76     | 70  | 64  | 58 | 53 | 47  | 40                             | 67                               | 86     | 80  | 74  | 69  | 63 | 57 | 51 | 44 | 71    |
|        | 7.5      | 2672   | 81                               | 75  | 69  | 63  | 57 | 51 | 45  | 38 | 65                               | 86 | 80     | 74  | 69  | 63 | 57 | 51  | 44                             | 71                               | 90     | 84  | 79  | 73  | 67 | 61 | 55 | 48 | 75    |
|        | 10       | 3563   | 84                               | 78  | 72  | 66  | 60 | 54 | 48  | 41 | 68                               | 89 | 83     | 77  | 71  | 66 | 60 | 54  | 47                             | 74                               | 93     | 87  | 82  | 76  | 70 | 64 | 58 | 51 | 78    |
| 400    | 2        | 905    | 68                               | 62  | 56  | 50  | 44 | 38 | 31  | 26 | 52                               | 73 | 68     | 62  | 56  | 50 | 44 | 36  | 31                             | 58                               | 78     | 72  | 66  | 60  | 54 | 48 | 40 | 36 | 62    |
|        | 5        | 2262   | 77                               | 71  | 65  | 60  | 54 | 48 | 42  | 35 | 62                               | 83 | 77     | 71  | 65  | 59 | 53 | 48  | 41                             | 67                               | 87     | 81  | 75  | 69  | 63 | 58 | 52 | 45 | 72    |
|        | 7.5      | 3393   | 81                               | 75  | 70  | 64  | 58 | 52 | 46  | 39 | 66                               | 87 | 81     | 75  | 69  | 63 | 58 | 52  | 45                             | 72                               | 91     | 85  | 79  | 74  | 68 | 62 | 56 | 49 | 76    |
|        | 10       | 4524   | 84                               | 78  | 73  | 67  | 61 | 55 | 49  | 42 | 69                               | 90 | 84     | 78  | 72  | 66 | 60 | 55  | 48                             | 74                               | 94     | 88  | 82  | 76  | 71 | 65 | 59 | 52 | 79    |

For sizes above 400mm the data is on request